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a b s t r a c t

In this paper we generalise the risk models beyond the ordinary framework of affine processes or Markov
processes and study a risk process where the claim arrivals are driven by a Cox process with renewal
shot-noise intensity. The upper bounds of the finite-horizon and infinite-horizon ruin probabilities
are investigated and an efficient and exact Monte Carlo simulation algorithm for this new process
is developed. A more efficient estimation method for the infinite-horizon ruin probability based on
importance sampling via a suitable change of probability measure is also provided; illustrative numerical
examples are also provided.
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1. Introduction

In insurance modelling a Poisson process has a long history of
being used as a classicalmodel for the claim-arrival process. Exten-
sive discussions from both applied and theoretical viewpoints can
be found in early literature, Cramér (1930), Cox and Lewis (1966),
Bühlmann (1970) and Çınlar (1974). A Poisson process is a simple
counting process that measures the number of claim occurrences
within a period of time. It is easy to use mainly due to its memo-
ryless property. However, the exponential distribution underlying
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claim-arrival times is often not appropriate to use for modelling
the interarrival times of claim arrivals in real situations. The likeli-
hood of a claim given the time elapsed since the previous one is not
necessarily constant throughout time. There has been a significant
volume of literature that questions the appropriateness of the Pois-
son process in insurance modelling, in particular for catastrophic
events; see Seal (1983) and Beard et al. (1984).

As an alternative point process to generate claim arrivalswe can
employ a non-homogeneous Poisson process or a Cox process first in-
troduced by Cox (1955b). A Cox process is a natural generalisation
of a Poisson process by considering the intensity of Poisson process
as a realisation of a random measure (Møller, 2003). The Cox pro-
cess provides the flexibility of letting the intensity not only depend
on time but also allowing it to be a stochastic process. Hence, it can
be viewed as a two-step randomisation procedure which can deal
with the stochastic nature of catastrophic loss occurrences in the
real world.
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Moreover, shot-noise processes (Cox and Isham, 1980) are
particularly useful to model claim arrivals; they provide measures
for frequency,magnitude and the time period needed to determine
the effect of catastrophic events within the same framework;
as time passes, the shot-noise process decreases as more and
more losses are settled, and this decrease continues until another
event occurs which will result in a positive jump. Therefore, the
shot-noise process can be used as the intensity of a Cox process
to measure the number of catastrophic losses. Previous works
on insurance applications using a shot-noise process or a Cox
process with shot-noise intensity can be found in Klüppelberg and
Mikosch (1995), Brémaud (2000), Dassios and Jang (2003), Jang and
Krvavych (2004), Torrisi (2004), Dassios and Jang (2005), Albrecher
and Asmussen (2006), Macci and Torrisi (2011), Zhu (2013) and
Schmidt (2014).

In reality, when catastrophic events occur, the arrivals of the
associated claims arising from them could also depend on the time
elapsed since the previous catastrophic events (e.g. floods, storms,
hails, bushfires, earthquakes and terrorist attacks). Hence, the
information provided by the time intervals between the primary
events is also valuable in insurance. Tomodel the arrivals of claims
arising from catastrophic events where the interarrival times
between the primary events are additionally included, further
improved models are required. For this purpose, in this paper
we introduce a shot-noise process driven by an ordinary renewal
process as the claim-arrival intensity process. It is a Cox process
that further generalises the risk models beyond the ordinary
framework of affine processes or Markov processes.

The paper is structured as follows. Our model of the Cox
process with renewal shot-noise intensity is introduced and the
mathematical definition is provided in Section 2. This process is
then used as the claim-arrival process in a risk model, and we
find an appropriate martingale in Section 3 to find the upper
bounds of the finite-horizon and infinite-horizon ruin probabilities
in Section 4. In Section 5, we develop an associated numerical
algorithm for simulating this new risk process, and it is used
to estimate the ruin probabilities based on crude Monte Carlo
simulation. A more efficient estimation method for the infinite-
horizon ruin probability based on importance sampling is also
provided. To illustrate in detail how this proposed model can be
implemented, we provide related numerical examples in Section 6.
There, we specify that both the claim sizes and jump sizes in the
claim-arrival intensity follow exponential distributions and the
interarrival times follow an inverse Gaussian distribution.

2. A renewal shot-noise cox process

We generalise the classical Cox process with Poisson shot-noise
intensity to a Cox processwith renewal shot-noise intensity as defined
below. The arrivals of jumps follow a renewal process and the
impact of each jump decays exponentially over time.

Definition 2.1 (Renewal Shot-noise Cox Process). A renewal shot-
noise Cox process (Cox process with renewal shot-noise intensity) is
a point process Nt ≡


Tj

j=1,2,... on R+ with renewal shot-noise

intensity λt , i.e. a non-negative shot-noise process driven by an
ordinary renewal process specified by

λt = λ0e−δt
+

Mt
i=1

Yie−δ(t−T∗
i ), t ≥ 0,

where

• λ0 is the initial intensity;
• δ > 0 is the constant rate of exponential decay;
Fig. 1. A sample path of renewal shot-noise intensity process λt .

•

Mt

t≥0 is a renewal process with arrival times


T ∗

i


i=1,2,..., i.e.

Mt ≡

T ∗

i


i=1,2,...;

•

Yi

i=1,2,... is a sequence of i.i.d. random variables (sizes of

renewal jumps or shots) with distribution function H (y) , y >
0, which is assumed to be absolutely continuous with density
function h(y) and independent ofMt .

A sample path of the renewal shot-noise intensity process λt
is illustrated in Fig. 1. If Mt is a Poisson process instead, then λt
is a classical shot-noise process (Cox and Isham, 1980). If we set
Yi ≡ 1, λ0 = 0 and replace Mt by the point process Nt itself,
then Nt is the classical Markovian self-exciting Hawkes process
(Hawkes, 1971) on the half line. In this paper, we assume that Mt
follows a renewal process, and our process is then a special case of
generalised shot-noise Cox processes (Møller and Torrisi, 2005).

Some distributional properties of this process such as moments
have been summarised in Dassios and Jang (2012). Note that this
process is no longer within the usual framework of an affine pro-
cess (Duffie et al., 2000) or a Markov process due to the additional
renewal components. In order to establish aMarkovian framework,
we need to include a supplementary variable Ut , the time elapsed
since the last jump arrived in the intensity process λt , i.e.

Ut := t −

Mt
i=1

Ri,

where {Ri}i=1,2,... are the interarrival times of the renewal process
Mt , i.e.

Ri := T ∗

i − T ∗

i−1, i = 1, 2, . . . , T ∗

0 = 0,

and they are i.i.d. with distribution function P(u), u > 0, which
is assumed to be absolutely continuous with density function p(u).
The idea of adding this supplementary variableUt tomake the pro-
cessMarkovian can be found as early as in Cox (1955a).Ut increases
at unit rate till a jump arrives; then it goes back to 0. Note that, if
ρ (u) is the failure rate of the distribution, we have

P(u) = 1 − exp


−

 u

0
ρ (v) dv


,

p(u) = ρ (u) exp


−

 u

0
ρ (v) dv


,

and ρ (u) =
p(u)
P̄(u)

where P̄(u) := 1 − P(u).

3. A risk process driven by a renewal shot-noise Cox process

Now, let us consider an insurance company with surplus
process Xt in continuous time on a probability space (Ω,F , P).We
assume

Xt = X0 + ct −

Nt
j=1

Zj, t ≥ 0, (1)
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where

• X0 ≥ 0 is the initial reserve at time t = 0;
• c > 0 is the constant rate of premium income;
• Nt is a renewal shot-noise Cox process (defined by Defini-

tion 2.1) with associated claim-arrival times

Tj

j=1,2,...;

•

Zj

j=1,2,... are claim sizes which are assumed to be i.i.d. with

distribution function Z(z), z > 0. We also assume they are
independent of Nt .

The generator of the joint process (Xt , λt ,Ut , t) acting on a
function f (x, λ, u, t) belonging to its domain is given by

A f (x, λ, u, t) =
∂ f
∂t

+
∂ f
∂u

− δλ
∂ f
∂λ

+ c
∂ f
∂x

+ λ


∞

0
f (x − z, λ, u, t) dZ (z)− f (x, λ, u, t)


+

p (u)
P̄(u)


∞

0
f (x, λ+ y, 0, t) dH (y)− f (x, λ, u, t)


, (2)

where f : (−∞,∞) × (0,∞) × (0,∞) × R+
→ (0,∞). It is

sufficient that f (x, λ, u, t) is differentiable w.r.t. x, λ, u, t for all
x, λ, u, t and that ∞

0
f (x − z, ·, ·, ·) dZ (z)− f (x, ·, ·, ·)

 < ∞

for f (x, λ, u, t) to belong to the domain of the generator A. For
details on generators of piecewise deterministic Markov processes
we refer to Davis (1984), Dassios and Embrechts (1989), Davis
(1993) and Rolski et al. (2008).

For simplicity, we denote first-order moments by

π1 :=


∞

0
up(u)du, α1 :=


∞

0
ydH(y),

γ1 :=


∞

0
zdZ(z).

We also denote the Laplace transforms the moment generating
functions by

p̂(ν) :=


∞

0
e−νup(u)du, ĥ (ν) :=


∞

0
e−νydH (y) ,

φ(ν) :=


∞

0
eνzdZ (z) .

We will be assuming existence of the above where necessary.

Lemma 3.1. The net profit condition under the probability measure
P is

c >
γ1α1

δπ1
. (3)

Proof. If the net profit condition holds, then, the expected
premium received between two successive claims should exceed
the expected amount of a claim loss, i.e. cE[T ′

] > E[Zj] where T ′

is the interarrival time of loss claims. It is also equivalent to the
condition
d
dν


p̂(cν)ĥ


−
φ(ν)− 1

δ


ν=0

< 0. �

Lemma 3.2. Consider the equation

p̂(θ + cν) ĥ


−
φ (ν)− 1

δ


= 1, (4)

for a constant θ ≥ 0. Then, the following are true:
Fig. 2. Function f0(ν) and the positive solution ν0 .

(i) for θ > 0, there exists a unique positive νθ such that (4) is
satisfied for ν = νθ ;

(ii) in particular, for θ = 0, under the net profit condition (3), there
exists a unique positive ν0 such that (4) is satisfied for ν = ν0.

Proof. Define

fθ (ν) := p̂(θ + cν)ĥ


−
φ (ν)− 1

δ


, θ ≥ 0, (5)

which is a convex function of ν for all θ ≥ 0, as its secondderivative
w.r.t. ν is given by

f ′′

θ (ν) =


∞

y=0


∞

u=0


−cu +

φ′ (ν)

δ
y
2

+
φ′′ (ν)

δ



× e−(θ+cν)ue

φ(ν)−1
δ


yp(u)dudH(y) ≥ 0.

Also at ν = 0, we have

fθ (0) = p̂(θ + cν)ĥ


−
φ (ν)− 1

δ


= p̂(θ) < 1.

Hence, if θ > 0, there exists a unique νθ which is positive and
satisfies (4).

In particular, for θ = 0, we need the first derivative to be
negative at ν = 0 in order for ν0 to exist, where the uniqueness
is guaranteed by convexity. The derivative at ν = 0 is

f ′

0(ν)

ν=0 = −cπ1 + γ1

α1

δ
,

and this is negative by (3), also see Fig. 2. �

Using Lemma 3.2, we will now find a suitable martingale which
will be used to derive the upper bounds of the infinite-horizon and
finite-horizon ruin probabilities in Section 4.

Theorem 3.1. Suppose the net profit condition (3) holds. In this case,

e−νθ Xt e−θ te
φ(νθ )−1

δ
λt


∞

Ut
e−(θ+cνθ )vp(v)dv

e−(θ+cνθ )Ut P̄(Ut)
(6)

is a P-martingale.

Proof. From (2), f (x, λ, u, t) has to satisfy the condition Af = 0
for it to be a martingale. Setting

f (x, λ, u, t) = e−νxe−θ te
φ(ν)−1
δ

λh̄(u)
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in (2), we get the equation

h̄′(u)− (θ + cν) h̄(u)

+
p (u)
P̄(u)


ĥ


−
φ (ν)− 1

δ


h̄(0)− h̄(u)


= 0. (7)

Solving (7), we have

h̄(u) = h̄(0)


∞

u e−(θ+cν)vp(v)dv

e−(θ+cν)u P̄(u)
ĥ


−
φ (ν)− 1

δ



+ h̄(0)
1 − p̂(θ + cν) ĥ


−
φ(ν)−1
δ


e−(θ+cν)u P̄(u)

.

As the first term is bounded, for this function to belong to the
domain of the generator the second term, which has infinite
expectation should vanish. Hence, we set

p̂(θ + cν) ĥ


−
φ (ν)− 1

δ


= 1,

and therefore ν = νθ . We now have

h̄(u) = h̄(0)


∞

u e−(θ+cνθ )vp(v)dv

e−(θ+cνθ )u P̄(u)
ĥ


−
φ (ν)− 1

δ


,

and the theorem is proved. �

4. Ruin probabilities

In this section, we obtain upper bounds for ruin probabilities,
by employing a martingale approach. Similar ideas can be found in
Dassios and Embrechts (1989), Dassios and Jang (2003) andDassios
and Zhao (2011). We define the ruin time by

τ ∗
:= inf {t : Xt < 0} .

If Xt ≥ 0 for all t > 0, then, τ ∗
= ∞. With the help of Theorem 3.1,

we can obtain upper bounds for the finite-horizon ruin probability
Pr {τ ∗

≤ T | X0, λ0,U0} for a fixed time T > 0 and the infinite-
horizon (ultimate) ruin probability Pr {τ ∗ < ∞ | X0, λ0,U0}. Nu-
merical examples will be provided later in Section 6.

Theorem 4.1. Suppose the net profit condition (3) holds. We then
have

Pr

τ ∗

≤ T | X0, λ0,U0


≤ inf
θ>0


ℵ(U0, θ)

ℵ(θ)
eθT e−νθ X0e

φ(νθ )−1
δ

λ0


, (8)

Pr

τ ∗ < ∞ | X0, λ0,U0


≤

ℵ(U0, 0)
ℵ(0)

e−ν0X0e
φ(ν0)−1

δ
λ0 , (9)

where

ℵ(u, θ) :=


∞

u e−(θ+cνθ )vp(v)dv

e−(θ+cνθ )u P̄(u)
, ℵ(θ) := inf

u>0


ℵ(u, θ)


. (10)

Proof. Since (6) is a martingale and τ ∗
∧ T := min{τ ∗, T } is a

stopping time, by the Optional Stopping Theorem, we have

E

e−νθ Xτ∗∧T e−θ(τ∗

∧T)e
φ(νθ )−1

δ
λτ∗∧T ℵ(Uτ∗∧T , θ)

 X0, λ0,U0


= e−νθ X0e

φ(νθ )−1
δ

λ0ℵ(U0, θ)
and therefore

E


e−νθ Xτ∗ e−θτ∗

e
φ(νθ )−1

δ
λτ∗ ℵ(Uτ∗ , θ)

 X0, λ0,U0, τ
∗

≤ T


× Pr


τ ∗

≤ T | X0, λ0,U0


+ E


e−νθ XT e−θT e

φ(νθ )−1
δ

λT ℵ(UT , θ)

 X0, λ0,U0, τ
∗ > T


× Pr


τ ∗ > T | X0, λ0,U0


= e−νθ X0e

φ(νθ )−1
δ

λ0ℵ(U0, θ). (11)

Hence, we have

e−νθ X0e
φ(νθ )−1

δ
λ0ℵ(U0, θ)

≥ E


e−νθ Xτ∗ e−θτ∗

e
φ(νθ )−1

δ
λτ∗ ℵ(Uτ∗ , θ)

 X0, λ0,U0, τ
∗

≤ T


× Pr


τ ∗

≤ T | X0, λ0,U0

.

As τ ∗
≤ T , we have

e−θτ∗

≥ e−θT , e−νθ Xτ∗ ≥ 1, e
φ(νθ )−1

δ
λτ∗ ≥ 1,

ℵ(Uτ∗ , θ) ≥ ℵ(θ),

almost surely and

Pr

τ ∗

≤ T | X0, λ0,U0


≤
ℵ(U0, θ)

ℵ(θ)
eθT e−νθ X0e

φ(νθ )−1
δ

λ0 , ∀ θ ≥ 0. (12)

Hence, (8) follows. If we set θ = 0 in (12), we have (9) which is
true for any time T . �

Remark 4.1. In order to investigate the monotonicity for the
function ℵ(u, θ) of (10) w.r.t. the variable u, we calculate its first
derivative
∂

∂u
ℵ(u, θ) = −ρ(u)

+
(θ + cνθ ) P̄(u)+ p(u)

P̄(u)
2 e(θ+cνθ )u


∞

u
e−(θ+cνθ )vp(v)dv.

We observe that for any z > 0, we have

P̄(u + z)
P̄(u)

= exp


−

 u+z

u
ρ(v)dv


= exp


−

 z

0
ρ(s + u)ds


.

We then observe that

• the failure rate ρ(u) is a non-decreasing function of u, if and
only if P̄(u+z)

P̄(u)
is a non-increasing function of u for any z > 0;

• the failure rateρ(u) is a non-increasing function of u, if and only
if P̄(u+z)

P̄(u)
is a non-decreasing function of u for any z > 0.

We now rewrite ℵ(u, θ) as

ℵ(u, θ) =


∞

u e−(θ+cνθ )(v−u)p(v)dv

P̄(u)

=


∞

0 e−(θ+cνθ )sp(u + s)ds

P̄(u)

=


∞

0


1 −

 s
0 (θ + cνθ ) e−(θ+cνθ )zdz


p(u + s)ds

P̄(u)

=
P̄(u)−


∞

s=0

 s
z=0 (θ + cνθ ) e−(θ+cνθ )zp(u + s)dsdz

P̄(u)
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=
P̄(u)−


∞

z=0


∞

s=z (θ + cνθ ) e−(θ+cνθ )zp(u + s)dsdz

P̄(u)

= 1 − (θ + cνθ )


∞

0
e−(θ+cνθ )z

P̄(u + z)
P̄(u)

dz.

Hence,

• if ρ(u) is a non-decreasing function of u, then ℵ(u, θ) is a non-
decreasing function of u and its minimum value is

ℵ(θ) = ℵ(0, θ) = p̂ (θ + cνθ ) ; (13)

• if ρ(u) is a non-increasing function of u, then ℵ(u, θ) is a non-
increasing function of u and its minimum value is

ℵ(θ) = ℵ(∞, θ) = lim
u→∞

p(u)
p(u)+ (θ + cνθ ) P̄(u)

= lim
u→∞

ρ(u)
ρ(u)+ (θ + cνθ )

=
ρ∗

ρ∗ + (θ + cνθ )
,

where ρ∗
:= limu→∞ ρ(u) and l’Hôpital’s rule may need to find

the limit;
• in all other cases when ρ(u) is a non-monotonic function of u,

ℵ(θ) need to be calculated numerically. We provide numerical
examples later in Section 6.

5. Estimating ruin probabilities by simulation

As many ruin problems based on our generalised risk model of
(1) may lead to no closed-form results in general, we provide a
numerical algorithm for efficiently simulating sample paths of the
risk process Xt . Thereafter, we develop amethod for estimating the
ultimate ruin probability by using importance sampling via change
of measure.

5.1. Numerical algorithm for exact simulation

We will first provide an efficient numerical algorithm for exact
simulation (rather than considering a discrete time version of the
process).

Algorithm 5.1. Given the initial condition

X0, λ0,U0


, we can

simulate a path of


Xt , λt ,Ut


t≥0 recursively by the following
steps:

1. Simulate the (k+1)th interarrival time Sk+1 in the point process
Nt by explicitly inverting its tail distribution

Pr{Sk+1 > s} = exp


−

 tk+s

tk
λt+k

e−δ(u−tk)du


= exp


−
1 − e−δs

δ
λt+k


.

2. Simulate the (k + 1)th interarrival time Ek+1 in the intensity
process λt via

Pr{Ek+1 > s} = Pr {Rk+1 > Uk + s | Rk+1 > Uk}

=
P̄(Uk + s)
P̄(Uk)

, Rk+1 ∼ P, (14)

where Ek+1 can be simulated by inversion if P̄(Uk+s)
P̄(Uk)

has an ana-
lytic inverse function, otherwise, Ek+1 can be simulated by trun-
cation; we provide a numerical example in Section 6.

3. Record the (k + 1)th common interarrival time Ik+1 = min
{Ek+1, Sk+1}, and the (k + 1)th arrival time tk+1 = tk + Ik+1.

4. Simulate a path of the joint process (Xt , λt ,Ut)within the time
interval [tk, tk + Ik+1):
• if min {Ek+1, Sk+1} = Ek+1, then, set
Utk+1 = 0, λtk+1 = λt+k

e−δIk+1 + Yk+1,

Xtk+1 = Xt+k
+ cIk+1;

• if min {Ek+1, Sk+1} = Sk+1, then, set
Utk+1 = Uk + Ik+1, λtk+1 = λt+k

e−δIk+1 ,

Xtk+1 = Xt+k
+ cIk+1 − Zk+1.

5.2. Ruin probability by change of measure

Ruin is usually a rare event under the original probability mea-
sure P in the real world. Hence, a direct crude Monte Carlo simula-
tion approach may not be so efficient. We extend the importance
samplingmethodology of Dassios and Zhao (2012) based on a suit-
able change of probability measure. This has a double effect:
(1) under the new probability measure the event of ruin becomes

almost certain;
(2) under the new probability measure, the importance sampling

estimator of the ruin probability has smaller variance (or
standard error).

The general method of improving the efficiency of stochastic
simulation using importance sampling in the literature can be
found in Siegmund (1976), Glynn and Iglehart (1989), Glasserman
(2003) and Asmussen and Glynn (2007). In particular, for ruin
problems, see Asmussen (1985), Asmussen and Binswanger (1997)
and Torrisi (2004).

Theorem 5.1. If the net profit condition (3) holds under the original
measure P, the ruin probability conditional on (X0, λ0,U0) can be
expressed under the new measure P̃ by

Pr

τ ∗ < ∞ | X0 = x, λ0 = λ,U0 = u


= e−ν0xeθ0λ̃h̄(u)Ẽ


Ψ (Xτ∗

−
)
e
−θ0λ̃τ∗

−

h̄(Uτ∗
−
)

 X0 = x,

λ̃0 = λ̃,U0 = u


, (15)

where ν0 is defined in (ii) of Lemma 3.2, θ0 :=
φ(ν0)−1
δφ(ν0)

, λ̃ := φ(ν0)λ,

h̄(u) :=

¯̃P(u)
P̄(u)

ecν0u, ¯̃P(u) := 1 − P̃(u), (16)

Ψ (u) :=


∞

u e−ν0(z−u)dZ̃(z)
¯̃Z(u)

,
¯̃Z(u) := 1 − Z̃(u), (17)

with the new equivalent probability measure P̃ defined via the
Radon–Nikodym derivative (or likelihood ratio)

dP
dP̃

:= e−ν0xeθ0λ̃h̄(u)Ψ (Xτ∗
−
)
e
−θ0λ̃τ∗

−

h̄(Uτ∗
−
)
.

The associated parameter setting for the process (Xt , λt ,Ut) under P
transforms to the new one under P̃ according to

P → P̃ : λ → λ̃, c → c̃, δ → δ̃,

p → p̃, P → P̃, Z → Z̃, h → h̃,

where c̃ = c, δ̃ = δ,

p̃(u) :=
e−cν0u

p̂(cν0)
p(u), P̃(u) :=

 u

0
p̃(v)dv, (18)

dZ̃(z) :=
eν0z

φ(ν0)
dZ(z), h̃(u) :=

e
φ(ν0)−1
δφ(ν0)

u

φ(ν0)

h


u
φ(ν0)


ĥ

−
φ(ν0)−1

δ

 . (19)
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Proof. If we set θ = 0 in Theorem 3.1 and (7) and further assume
h̄(0) = 1, we have the P-martingale

e−ν0Xt e
φ(ν0)−1

δ
λt h̄(Ut), t > 0, (20)

where

h̄′(u)− cν0h̄(u)+
p(u)
P̄(u)


ĥ


−
φ(ν0)− 1

δ


h̄(0)− h̄(u)


= 0.

This differential equation has the solution

h̄(u) =


∞

u e−cν0vp(v)dv

e−cν0uP̄(u)
ĥ


−
φ(ν0)− 1

δ


. (21)

Clearly h̄(u) is bounded, since by l’Hôpital’s rule, we have

lim
u→∞


∞

u e−cν0vp(v)dv

e−cν0uP̄(u)
= lim

u→∞

p(u)
P̄(u)

cν0 +
p(u)
P̄(u)

≤ 1.

Note that
∞

u
e−cν0vp(v)dv = p̂(cν0)


∞

u
p̃(v)dv = p̂(cν0)

¯̃P(u),

which can be rewritten (21) as

h̄(u) = ĥ


−
φ(ν0)− 1

δ


p̂(cν0)

¯̃P(u)
P̄(u)

ecν0u.

Moreover, by Lemma 3.2 we have

ĥ


−
φ(ν0)− 1

δ


p̂(cν0) = 1

which can be simplified as (16).
We now carry out the change of measure via the analysis of

Model-2 type (Dassios and Embrechts, 1989) generator

Af (x, λ, u) = c
∂ f
∂x

+
∂ f
∂u

− δλ
∂ f
∂λ

+ λ

 x

0
f (x − z, λ, u)dZ(z)+ Z̄(x)− f (x, λ, u)


+

p(u)
P̄(u)


∞

0
f (x, λ+ y, 0)dH(y)− f (x, λ, u)


, x > 0.

The ruin probability under the original measure P

f (x, λ, u) = Pr

τ ∗ < ∞ | X0 = x, λ0 = λ,U0 = u


is the solution to the integro-differential equationAf (x, λ, u) = 0.
Plugging

f (x, λ, u) = e−ν0xe
φ(ν0)−1

δ
λh̄(u)f̃ (x, λ, u)

into Af (x, λ, u) = 0, we have

0 = c
∂ f̃
∂x

+
∂ f̃
∂u

− δλ
∂ f̃
∂λ

+φ(ν0)λ

 x

0
f̃ (x − z, λ, u)

eν0z

φ(ν0)
dZ(z)

+
Z̄(x)

e−ν0xe
φ(ν0)−1

δ
λh̄(u)φ(ν0)

− f̃ (x, λ, u)



+ ĥ


−
φ(ν0)− 1

δ


h̄(0)
h̄(u)

p(u)
P̄(u)

×

 ∞

0
f̃ (x, λ+ y, 0)

e
φ(ν0)−1

δ
y

ĥ

−
φ(ν0)−1

δ

dH(y)− f̃ (x, λ, u)

 .
Hence,

0 = c
∂ f̃
∂x

+
∂ f̃
∂u

− δλ
∂ f̃
∂λ

+φ(ν0)λ

 x

0
f̃ (x − z, λ, u)

eν0z

φ(ν0)
dZ(z)

+
Z̄(x)

e−ν0xe
φ(ν0)−1

δ
λh̄(u)φ(ν0)

− f̃ (x, λ, u)



+
p(u)e−cν0u

∞

u e−cν0vp(v)dv

×

 ∞

0
f̃ (x, λ+ y, 0)

e
φ(ν0)−1

δ
y

ĥ

−
φ(ν0)−1

δ

dH(y)− f̃ (x, λ, u)

 .
Letting λ̃ = φ(ν0)λ, we have

0 = c
∂ f̃
∂x

+
∂ f̃
∂u

− δλ̃
∂ f̃

∂λ̃

+ λ̃

 x

0
f̃ (x − z, λ̃, u)

eν0z

φ(ν0)
dZ(z)

+
Z̄(x)

e−ν0xe
φ(ν0)−1
δφ(ν0)

λ̃h̄(u)φ(ν0)
− f̃ (x, λ̃, u)

+
p(u)e−cν0u

∞

u e−cν0vp(v)dv

×

 ∞

0
f̃

x, λ̃+ φ(ν0)y, 0

 e
φ(ν0)−1

δ
y

ĥ

−
φ(ν0)−1

δ

dH(y)− f̃ (x, λ̃, u)

 .
By the change of variable u = φ(ν0)y, we have

0 = c
∂ f̃
∂x

+
∂ f̃
∂u

− δλ̃
∂ f̃

∂λ̃

+ λ̃

 x

0
f̃ (x − z, λ̃, u)

eν0z

φ(ν0)
dZ(z)

+
Z̄(x)

e−ν0xe
φ(ν0)−1
δφ(ν0)

λ̃h̄(u)φ(ν0)
− f̃ (x, λ̃, u)

+
p(u)e−cν0u

∞

u e−cν0vp(v)dv

×

 ∞

0
f̃

x, λ̃+ u, 0

 e φ(ν0)−1
δφ(ν0)

u

φ(ν0)

h


u
φ(ν0)


ĥ

−
φ(ν0)−1

δ

du − f̃ (x, λ̃, u)

 .
Using an Esscher transform (Gerber and Shiu, 1994) on (18) and
(19), we have

0 = c
∂ f̃
∂x

+
∂ f̃
∂u

− δλ̃
∂ f̃

∂λ̃

+ λ̃

 x

0
f̃ (x − z, λ̃, u)dZ̃(z)

+
Z̄(x)

e−ν0xe
φ(ν0)−1
δφ(ν0)

λ̃h̄(u)φ(ν0)
− f̃ (x, λ̃, u)


+

p̃(u)
¯̃P(u)


∞

0
f̃

x, λ̃+ u, 0


h̃(u)du − f̃ (x, λ̃, u)


.

It is easy to check that


∞

0 h̃(u)du = 1, so h̃(u) is a well defined
density function. Note that,

¯̃Z(x) =


∞

x
dZ̃(z) =


∞

x eν0zdZ(z)
φ(ν0)

.
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Therefore,

Z̄(x)

e−ν0xe
φ(ν0)−1
δφ(ν0)

λ̃h̄(u)φ(ν0)
=

e−
φ(ν0)−1
δφ(ν0)

λ̃

h̄(u)


∞

x e−ν0(z−x)dZ̃(z)
¯̃Z(x)

¯̃Z(x)

=
e−

φ(ν0)−1
δφ(ν0)

λ̃

h̄(u)
Ψ (x) ¯̃Z(x).

Hence, we have

0 = c
∂ f̃
∂x

+
∂ f̃
∂u

− δλ̃
∂ f̃

∂λ̃

+ λ̃

 x

0
f̃ (x − z, λ̃, u)dZ̃(z)

+
e−

φ(ν0)−1
δφ(ν0)

λ̃

h̄(u)
Ψ (x) ¯̃Z(x)− f̃ (x, λ̃, u)


+

p̃(u)
¯̃P(u)


∞

0
f̃

x, λ̃+ u, 0


h̃(u)du − f̃ (x, λ̃, u)


,

with the solution

f̃ (x, λ̃, u) = Ẽ


Ψ (xτ∗

−
)
e
−
φ(ν0)−1
δφ(ν0)

λ̃τ∗
−

h̄(Uτ∗
−
)

1

τ ∗ < ∞

  X0 = x,

λ̃0 = λ̃,U0 = u


.

We will prove in the next theorem that, if the net profit condition
(3) holds under the original measure P, then ruin occurs almost
surely under the new measure P̃. Hence, we have the ruin
probability (15). �

Theorem 5.2. If the net profit condition (3) holds under the original
measure P, then, ruin occurs almost surely under the new measure P̃.

Proof. Note that first-order moments under the new measure P̃
are given by

π̃1 := Ẽ[Ri] =


∞

0
up̃(u)du =


∞

0 ue−cν0up(u)du
p̂(cν0)

,

α̃1 := Ẽ[Yi] =


∞

0
uh̃(u)du = φ(ν0)


∞

0 ye
φ(ν0)−1

δ
ydH(y)

ĥ

−
φ(ν0)−1

δ

 ,

γ̃1 := Ẽ[Zj] =


∞

0
zdZ̃(z) =


∞

0 zeν0zdZ(z)
φ(ν0)

.

The loss rate under the new measure P̃ is given by

γ̃1α̃1

δ̃π̃1
=

p̂(cν0)

δĥ

−
φ(ν0)−1

δ

 ∞

0 zeν0zdZ(z)


∞

0 ye
φ(ν0)−1

δ
ydH(y)

∞

0 ue−cν0up(u)du
.

From (5), we have

f0(ν) = p̂(cν)ĥ


−
φ(ν)− 1

δ


,

f ′

0(ν) = p̂(cν)


∞

0 zeνzdZ(z)
δ


∞

0
ye

φ(ν)−1
δ

ydH(y)

− cĥ


−
φ(ν)− 1

δ


∞

0
ue−cνup(u)du.
From the net profit condition (3), we have

f ′

0(ν)

ν=0 = −cπ1 +

γ1α1

δ
< 0.

This is due to the convexity of f (ν) as proved in Lemma 3.2,
i.e. f ′′(ν) > 0. Recall that v0 is the unique positive solution to (4)
for θ = 0 (see Fig. 2) and we have f ′

0(ν)

ν=ν0>0 > 0. Then,

p̂(cν0)


∞

0 zeν0zdZ(z)
δ


∞

0
ye

φ(ν0)−1
δ

ydH(y)

> cĥ


−
φ(ν0)− 1

δ


∞

0
ue−cν0up(u)du

which can be rewritten as

p̂(cν0)


∞

0 zeν0zdZ(z)


∞

0 ye
φ(ν0)−1

δ
ydH(y)

δĥ

−
φ(ν0)−1

δ

 
∞

0 ue−cν0up(u)du
> c,

i.e.

γ̃1α̃1

δ̃π̃1
> c̃.

Hence, the expected loss rate exceeds the expected premium rate,
and ruin is almost certain to happen under the newmeasure P̃. �

We now analyse the efficiency of our simulation scheme
based on importance sampling developed in Theorem 5.1. In the
following Corollary 5.1, we prove that, for a relatively large initial
reserve, the new variance of the estimator for the ultimate ruin
probability based on importance sampling in Theorem 5.1 is less
than the variance of the estimator based on the crude simulation
of Algorithm 5.1 under the original probability measure.

Corollary 5.1. For any initial reserve x > x where

x :=
1
ν0


θ0λ̃+ ln

ℵ(u, 0)
ℵ(0)


,

and ℵ(u, 0),ℵ(0) are defined by (10), we have

V > Ṽ,

where V is the variance of the estimator for the ultimate ruin
probability based on the crude simulation under the original measure
P, and Ṽ is the variance based on the importance sampling procedure
under the new measure P̃, i.e.

V := Var

1

τ ∗ < ∞ | X0 = x, λ0 = λ,U0 = u


,

Ṽ := Vare−ν0xeθ0λ̃h̄(u)× Ψ (Xτ∗
−
)
e
−θ0λ̃τ∗

−

h̄(Uτ∗
−
)

 X0 = x,

λ̃0 = λ̃,U0 = u


.

Proof. We have that V = ψ(1 − ψ) where ψ := Pr{τ ∗ < ∞ |

X0 = x, λ0 = λ,U0 = u} and

Ṽ = E
e−ν0xeθ0λ̃h̄(u)× Ψ (Xτ∗

−
)
e
−θ0λ̃τ∗

−

h̄(Uτ∗
−
)

2  X0 = x,

λ̃0 = λ̃,U0 = u


− ψ2.
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Based on h̄(u) as specified in (21) and further discussions on lower
bounds in Remark 4.1, we have

h̄(u) = ℵ(u, 0)ĥ


−
φ(ν0)− 1

δ


≥ ℵ(0)ĥ


−
φ(ν0)− 1

δ


.

Moreover, note that Ψ (Xτ∗
−
) < 1 always holds, so we have

Ψ (Xτ∗
−
)
e
−θ0λ̃τ∗

−

h̄(Uτ∗
−
)

≤
1

ℵ(0)ĥ

−
φ(ν0)−1

δ

 .
Given h̄(u) from (21) and ℵ(u, 0) from (10), it is clear that, if x is
large enough, more precisely, if x > x, we have

e−ν0xeθ0λ̃h̄(u)× Ψ (Xτ∗
−
)
e
−θ0λ̃τ∗

−

h̄(Uτ∗
−
)
< 1.

Therefore,

Ṽ − V = E
e−ν0xeθ0λ̃h̄(u)× Ψ (Xτ∗

−
)
e
−θ0λ̃τ∗

−

h̄(Uτ∗
−
)

2  X0 = x,

λ̃0 = λ̃,U0 = u


− ψ

< Ee−ν0xeθ0λ̃h̄(u)× Ψ (Xτ∗
−
)
e
−θ0λ̃τ∗

−

h̄(Uτ∗
−
)

 X0 = x,

λ̃0 = λ̃,U0 = u


− ψ

= ψ − ψ = 0

and Ṽ < V. �

Remark 5.1. If ρ(u) is a non-decreasing function of u, then, using
(13) and Lemma 3.2, we haveℵ(0) = p̂ (cν0), and an explicit lower
bound for x,

x =
1
ν0


θ0λ̃+ ln h̄(u)


.

If we further assume u = 0, we simply have x =
θ0
ν0
λ̃.

Remark 5.2. In fact, Theorem5.1 combinedwith Corollary 5.1 tells
us that,

Ṽ = V × O

e−ν0x


,

which demonstrates the efficiency of the importance sampling
approach for a large initial reserve x. In practice, the initial reserve
is usually large, so the condition x > x is not a serious restriction.
Further improvements to the efficiency of our algorithm can be a
subject of future research.

6. Numerical implementation

For numerical implementation, we assume explicitly that,
under the measure P, the claim sizes


Zj

j=1,2,... and jump sizes

Yi

i=1,2,... follow exponential distributions, and the interarrival

times {Ri}i=1,2,... follow an inverse Gaussian distribution, say,

Z ∼ Exp(γ ), H ∼ Exp(α),

P ∼ IG

µIG =

a
b
, λIG = a2


,

where α, γ , a, b are all positive constants. We will now explain
how to implement our model step by step.
Distribution of claim sizes Z . If the claim sizes are exponentially
distributed with parameter γ under the measure P, we have γ1 =

1/γ , φ(ν0) =
γ

γ−ν0
, and Ψ (u) of (17) can be simplified as Ψ (u) =

γ−ν0
γ

and is independent of Xt . Hence, we do not need to record
Xτ∗

−
during the simulation for this special case. By transformation

(19), we have dZ̃(z) = (γ − ν0)e−(γ−ν0)zdz, which implies that
Z̃ ∼ Exp(γ − ν0), γ > ν0 under the measure P̃.
Distribution of interarrival times P . The distributional proper-
ties of inverse Gaussian distribution have been well documented
in Chhikara and Folks (1989). If P follows an inverse Gaussian dis-
tribution, say, P ∼ IG


µIG =

a
b , λIG = a2


with mean π1 = µIG =

a/b and the shape parameter λIG = a2, then, we have the density

p(u) =
a

√
2πu3

e−
(a−bu)2

2u ,

the Laplace transform

p̂(v) = e−

√
2v+b2−b


a
,

and the cumulative distribution function

P(u) = Φ


bu − a
√
u


+ e2abΦ


−

bu + a
√
u


, (22)

whereΦ(·) is the cumulative distribution function of the standard
normal distribution.

To calculate an upper bound for the ruin probability as given
by Theorem 4.1 and further based on Remark 4.1, since the failure
rate, ρ(u), is a non-monotonic function (Chhikara and Folks, 1977),
we need to calculate ℵ(θ) numerically. The key function ℵ(u, θ)
defined by (10) can be calculated explicitly by Eq. (23) given in
Box I.

For the Monte Carlo simulation via Algorithm 5.1, we note that
by (14), we have

Pr{Ek+1 > s} =
P̄(Uk + s)
P̄(Uk)

,

where

P̄(u) = Φ


−

bu − a
√
u


− e2abΦ


−

bu + a
√
u


.

However, the analytic inverse function for s does not exist, so
we have to simulate Ek+1 by truncating the inverse Gaussian
distribution. An efficient simulation algorithm of the inverse
Gaussian distribution can be found in Michael et al. (1976). By
transformation (18), it remains an inverse Gaussian distribution,
since the density under the measure P̃ is given by

p̃(u) =
a

√
2πu3

e−


a−

√
2cν0+b2u

2
2u ,

then, P̃ ∼ IG

µ̃IG =

ã
b̃
, λ̃IG = ã2


where ã = a, b̃ =


2cν0 + b2,

and

P̃(u) = Φ


b̃u − ã
√
u


+ e2ãb̃Φ


−

b̃u + ã
√
u


. (24)

Distribution of Jump sizes H . If we further assume H ∼ Exp(α),
then, we have α1 = 1/α, ĥ(ν) =

α
α+ν

and

h̄(u) =
1 − P̃(u)
1 − P(u)

ecν0u,
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3)
ℵ(u, θ) = e(θ+cνθ )u−a
√

b2+2(θ+cνθ )−b
Φ


−

√
b2+2(θ+cνθ )u−a

√
u


− e2a

√
b2+2(θ+cνθ )Φ


−

√
b2+2(θ+cνθ )u+a

√
u


Φ


−

bu−a
√
u


− e2abΦ


−

bu+a
√
u

 (2

Box I.
where P(u) and P̃(u) are specified by (22) and (24) respectively. By
transformation (19), we have

h̃(u) =


αδ + φ(ν0)− 1

δφ(ν0)


e−


αδ+φ(ν0)−1
δφ(ν0)


u
.

Hence, H̃ ∼ Exp

αδ+φ(ν0)−1
δφ(ν0)


under the measure P̃.

Note that, the function f0(ν) as defined by (5) is given by

f0(ν) = e−

√
2cν+b2−b


a
×

α

α −

γ
γ−ν−1

δ

, ν ∈


0,

αδ

1 + αδ
γ


.

The key parameter ν0 can be found numerically (see Fig. 2). From
(3), the net profit condition is c > b

δaγα . We set the following
parameter values

(δ, c; λ0, X0,U0; a, b, α, γ ) = (2, 8; 1.5, 10, 0; 0.5, 5, 2, 0.5).

We can now estimate the ruin probability Pr {τ ∗
≤ T | X0, λ0,U0}

for any fixed time T based on Algorithm 5.1 using crude Monte
Carlo simulation1 with 10,000 replications, and the estimated ruin
probabilities for different times T . The corresponding standard
errors and running (CPU) times are given by Table 1 respectively.
As each path is independently generated, it is obvious that, the

standard error is

ψ(1−ψ)

n where ψ is the associated true ruin
probability and n is the total number of replications.

It is not so efficient (in fact, impossible in the strict sense) to
estimate the ultimate ruin probability based on crude Monte Carlo
simulation under this original probabilitymeasure P, as we need to
set the time T sufficiently large in order to approximate the infinite
horizon case. Ruin has a relatively small probability, so most of the
simulated samples are thrown away.

Alternatively, we can change themeasure from P to P̃ according
to Theorem 5.1, and the transformed parameters under P̃ are given
by

(δ̃, c̃; λ̃0, X0,U0; ã, b̃, α̃, γ̃ )
= (2, 8; 2.20, 10, 0; 0.5, 5.25, 1.52, 0.34), ν0 ≈ 0.1594,

where we find that all replications lead to ruin occurring before
time T = 200 and 91.70% of the replications before time T = 20,
see the second column in Table 2. By using the formula (15), we es-
timate the ultimate ruin probability as Pr {τ ∗ < ∞ | X0, λ0,U0} ≈

10.29%. Note that, λτ∗
−

= λτ∗ as λt is continuous at τ ∗.
The standard error is used for measuring the error, and it is es-

timated by the sample standard deviation of the simulation out-
put divided by the square root of the number of trials. Comparing
Tables 1 and 2, we see that the simulation is much more efficient
under P̃ than the one under P. The standard error is substantially
reduced by about 14 times under P̃ in average. Moreover, the com-
puting speed is much faster under P̃; the simulation for the case
T = 200 in Table 2 needed 19 s, whereas the simulation for an even
shorter period of T = 100 in Table 1 needed 258 s. This demon-
strates the points we made under Corollary 5.1 Remark 5.2.

1 All simulations in this paper are based on MatLab on a desktop PC with Intel
Core i7-3770 CPU@3.40 GHz processor, 8.00 GB RAM, 64-bit Operating System
Windows 7.
Table 1
Ruin probability Pr {τ ∗

≤ T | X0, λ0,U0} estimated based on crude Monte Carlo
simulation of 10,000 replications under the measure P.

Time T Ruin probability Standard error (×10−4) CPU time (s)

10 8.45% 27.82 29.59
20 9.37% 29.14 54.18
30 9.22% 28.93 93.02
40 9.32% 29.07 104.71
50 8.47% 27.84 128.76
60 9.06% 28.71 162.01
70 9.27% 29.00 191.74
80 9.01% 28.63 204.56
90 8.94% 28.53 244.25

100 9.01% 28.63 257.95

Fig. 3. Simulated ruin probabilities v.s. estimated upper bounds.

We also provide an estimated upper bound for the ultimate
ruin probability based on Theorem 4.1 by letting the initial
conditions X0, λ0 free and keeping other parameters the same,
i.e. (δ, c;U0; a, b, α, γ ) = (2, 8; 0; 0.5, 5, 2, 0.5). We can calcu-
late ℵ(U0, 0) = ℵ(0) = ℵ(0, 0) = 0.8830 based on (23), and then
the upper bound can be derived by

Pr

τ ∗ < ∞ | X0, λ0


≤ e−0.1594X0e0.2340λ0 .

It is plotted in Fig. 3 for (X0, λ0) ∈ [10, 20] × [1, 2] against the
associated estimated ruin probabilities by simulation under the
measure P̃. Higher initial intensity λ0 corresponds to higher ruin
probability, as it signifies a higher rate of incidence of claims ini-
tially. The underlying numerical results are represented in Tables 3
and 4. This is provided as a very quick alternative (without simu-
lation) to the other two methods.

In particular, we are interested in exploring how the distribu-
tion P of the renewal interarrival times affects the ultimate ruin
probability. The inverse Gaussian distribution has two parame-
ters: the mean µIG = a/b and the shape parameter λIG = a2
specified at the beginning of Section 6. Note that λIG also con-
trols the variance as the variance is µ3

IG/λIG. It is obvious that the
lower the mean µIG the higher the ruin probability. However, it
is unclear how the shape parameter λIG affects the ruin probabil-
ity. So, we fix the same level for the mean µIG = a/b = 0.1
as before and at the same time vary λIG; all other parameters of
course are kept constant, i.e. (δ, c; λ0, µIG, X0,U0;µIG, α, γ ) =
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Table 2
Ultimate ruin probability Pr {τ ∗ < ∞ | X0, λ0,U0} estimated based on Monte Carlo simulation of 10,000 replications under the measure P̃.

Time T Ruin probability under P̃ Ultimate ruin probability Standard error

×10−4


CPU time (s)

20 91.70% 10.34% 2.09 17.00
40 97.75% 10.29% 2.07 19.38
60 99.40% 10.28% 2.09 23.43
80 99.72% 10.29% 2.07 20.61

100 99.90% 10.25% 2.10 21.23
120 99.96% 10.25% 2.08 20.56
140 99.98% 10.29% 2.07 20.00
160 99.96% 10.29% 2.10 21.04
180 100.00% 10.31% 2.08 20.16
200 100.00% 2.10 19.36
Table 3
Ultimate ruin probability Pr {τ ∗ < ∞ | X0, λ0} (%) estimated based on Monte Carlo simulation of 10,000 replications under the measure P̃.

X0\λ0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 9.17 9.37 9.55 9.84 10.07 10.29 10.55 10.77 11.01 11.28 11.49
11 7.74 7.95 8.15 8.35 8.54 8.74 8.93 9.15 9.34 9.60 9.77
12 6.61 6.75 6.94 7.09 7.25 7.43 7.59 7.78 7.97 8.13 8.33
13 5.61 5.73 5.88 6.03 6.18 6.30 6.45 6.61 6.77 6.90 7.07
14 4.77 4.88 5.00 5.12 5.25 5.37 5.51 5.64 5.74 5.88 6.01
15 4.05 4.18 4.25 4.35 4.47 4.56 4.67 4.79 4.89 5.02 5.12
16 3.45 3.54 3.62 3.71 3.80 3.89 3.98 4.08 4.16 4.28 4.39
17 2.94 3.01 3.08 3.16 3.24 3.32 3.39 3.47 3.55 3.62 3.72
18 2.50 2.57 2.62 2.69 2.75 2.81 2.89 2.95 3.03 3.08 3.17
19 2.14 2.19 2.23 2.29 2.35 2.40 2.46 2.51 2.58 2.64 2.69
20 1.82 1.86 1.90 1.96 1.99 2.04 2.09 2.14 2.19 2.24 2.29
Table 4
The estimated upper bounds for the ultimate ruin probability Pr {τ ∗ < ∞ | X0, λ0} (%).

X0\λ0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 25.67 26.28 26.90 27.53 28.19 28.85 29.54 30.24 30.95 31.68 32.44
11 21.89 22.40 22.94 23.48 24.03 24.60 25.19 25.78 26.39 27.02 27.66
12 18.66 19.10 19.56 20.02 20.49 20.98 21.47 21.98 22.50 23.04 23.58
13 15.91 16.29 16.67 17.07 17.47 17.89 18.31 18.74 19.19 19.64 20.11
14 13.57 13.89 14.22 14.55 14.90 15.25 15.61 15.98 16.36 16.75 17.14
15 11.57 11.84 12.12 12.41 12.70 13.00 13.31 13.63 13.95 14.28 14.62
16 9.86 10.10 10.34 10.58 10.83 11.09 11.35 11.62 11.89 12.18 12.46
17 8.41 8.61 8.81 9.02 9.24 9.45 9.68 9.91 10.14 10.38 10.63
18 7.17 7.34 7.52 7.69 7.88 8.06 8.25 8.45 8.65 8.85 9.06
19 6.12 6.26 6.41 6.56 6.72 6.87 7.04 7.20 7.37 7.55 7.73
20 5.21 5.34 5.46 5.59 5.73 5.86 6.00 6.14 6.29 6.44 6.59
Table 5
Ultimate ruin probability Pr {τ ∗ < ∞ | X0, λ0,U0} for µIG = 0.1 with different λIG , estimated based on Monte Carlo simulation of 10,000 replications under the measure P̃.

λIG Ruin probability under P̃ Ultimate ruin probability Standard error (×10−4) CPU time (s)

0.1 100.00% 11.71% 2.5369 22.15
0.2 100.00% 10.52% 2.1741 19.22
0.3 100.00% 10.13% 2.0316 23.46
0.4 100.00% 9.94% 1.9770 17.96
0.5 100.00% 9.80% 1.9162 18.22
0.6 100.00% 9.71% 1.8614 17.82
0.7 100.00% 9.67% 1.8603 17.52
0.8 100.00% 9.61% 1.8375 16.97
0.9 100.00% 9.57% 1.8399 16.94
1 100.00% 9.56% 1.8093 17.53
2 100.00% 9.47% 1.7774 16.16
3 100.00% 9.45% 1.7677 16.01
4 100.00% 9.44% 1.7435 16.47
5 100.00% 9.45% 1.7593 16.72
6 100.00% 9.42% 1.7636 15.71
7 100.00% 9.42% 1.7184 15.69
8 100.00% 9.42% 1.7576 15.54
9 100.00% 9.44% 1.7348 15.63
10 100.00% 9.43% 1.7557 15.91
(2, 8; 1.5, 10, 0; 0.1, 2, 0.5). The results of this experiment with
different values for λIG are represented in Table 5, and each es-
timated value is based on 10,000 replications under the measure
P̃ within the time T = 200. The second column tells that all the
replications simulated under P̃ had ruin occurring before time T =

200 which also confirms Theorem 5.2. The third column shows
that the estimated ultimate ruin probabilities have some nega-
tive relationshipwithλIG (i.e. positive relationshipwith variance of
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renewal interarrival times). However, sensitivity to this parameter
decreases, as λIG increases.
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